

United States Department of Agriculture National Institute of Food and Agriculture

Effect of Solids Removal on Production of Pacific White Shrimp Litopenaeus vannamei in a Minimal Exchange, Biofloc-Based System

Jeff Brunson*, Jason Haveman, Edward DuRant, Daryl Weldon, and John Leffler

South Carolina Department of Natural Resources James A. Waddell Mariculture Center Bluffton, South Carolina

Solids in Biofloc Systems

Potential benefits

- Reduced water use
- Greater biosecurity
- Reduced capitalization cost
- Flexibility in site selection
 - Solids removal reduced:
 - TSS and VSS
 - Cyanobacteria
 - Bacteria density
 - Rate of nitrate accumulation
 - **Increased** primary production
 - Shrimp growth?

Experimental System

- Fifteen (15) plastic tanks fitted with vinyl pool liners.
- Tank Volume = 6.2 m³ at an average depth of 70 cm.
- Air supplied by a regenerative blower .

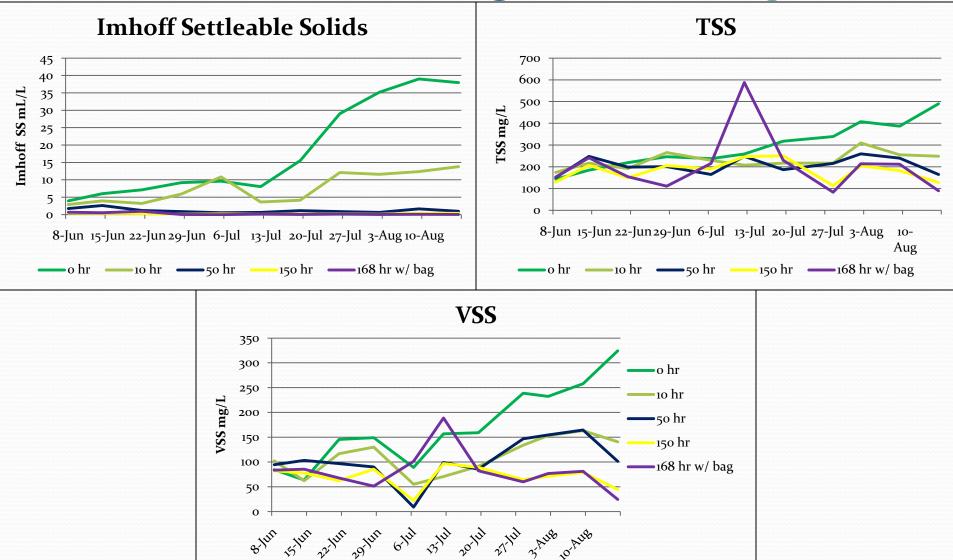
- Conical bottom settling chambers.
- Airlift driven, 5.1-6.2 L/min
- 15 L of sludge removed weekly

Experimental Design

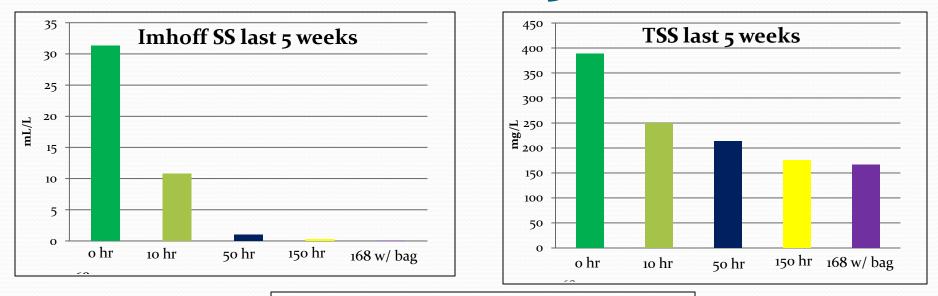
- Five treatments, in triplicate:
 - TRT A "Control"- Continuously unsettled
 - Airstone in settling chamber
 - TRT B Settled 10 hours/week
 - TRT C Settled 50 hours/week
 - TRT D Settled 150 hours/week
 - TRT E Settled 168 hours/week, with 250 μ mesh bag on return pipe.

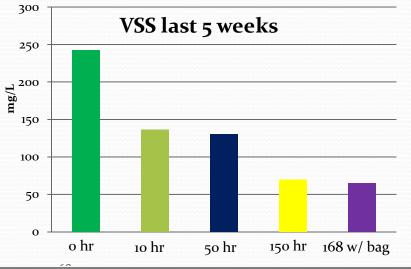
Stocking

- All tanks "seeded" with established biofloc- rich water
- Stocking Date June 8, 2010
- Initial Weight- 1.89 g
- 1000 shrimp/tank _____ 145 shrimp/m³

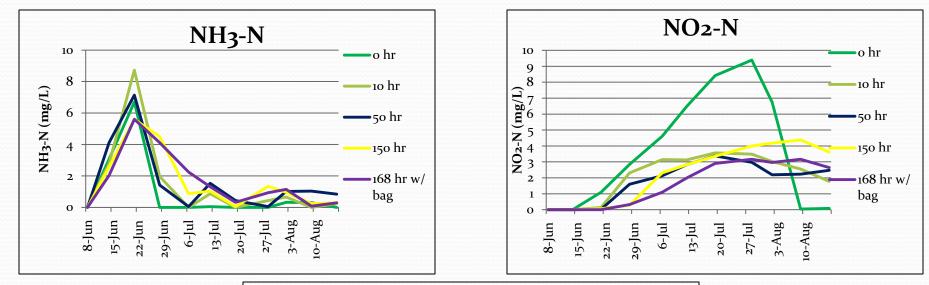

Early Problems

- Mortality June 15-22 (beginning one week after stocking)
- Dead shrimp removed twice per day.
- Losses from o-188 shrimp
- Daily measurements uniform
- No correlation with NH3-N or solids level.
- No treatment effect detected
- Shrimp redistributed

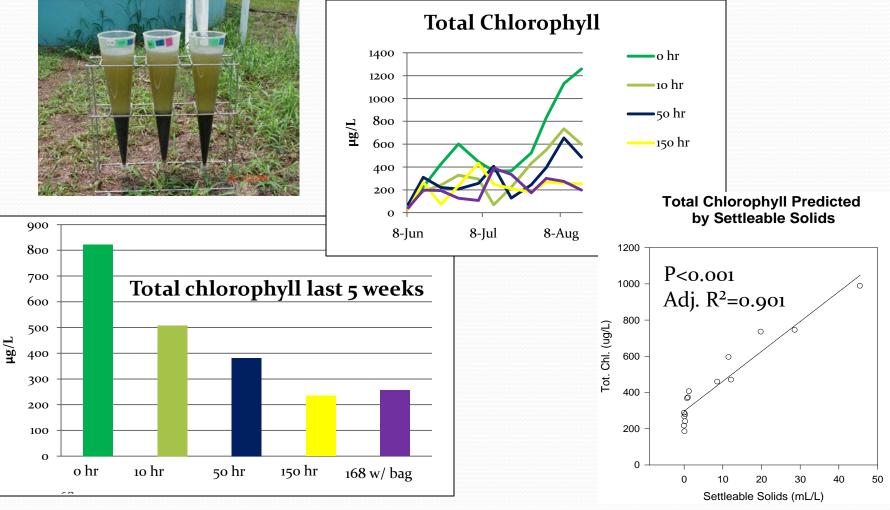

Daily Water Quality


- Temperature 23.9-32.8 ° C
 - Cold snap around July 4th
- pH 7.1-8.9
- Dissolved oxygen $\geq 4.3 \text{ mg/L}$
- Salinity 20.3-25.8 ppt

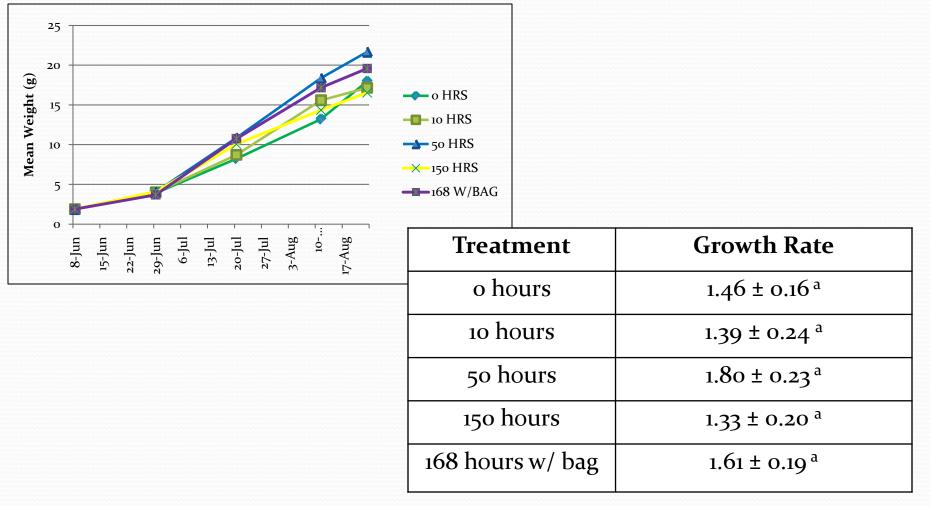
Solids Throughout Study



Solids in Last 5 Weeks



Treatment Effect on Nitrogen Cycling



Treatment Effect on Algal Community

Shrimp Growth

Means with the same superscript are not significantly different at P<0.05.

Mean Individual Shrimp Weight

Treatment	Mean Shrimp Weight (g)		Individual Weight at Harvest Predicted by Survival Rate
o hours	18.0 ± 1.8^{a}	24 —	° P=0.007
10 hours	17.2 ± 2.7^{a}	22 -	Adj. R²=0.429 ○
50 hours	21.7 ± 2.5 ^a	(g)	
150 hours	16.5 ± 2.2 ^a	al Weig −	
168 hours w/ bag	19.6 ± 2.1 ^a	- 02 - - 18 - - 18 - - 16 -	
Means with the same superscript are not significantly different at P<0.05.		 14 -	0

12

0.3

0.4

0.5

0.6

Survival Rate

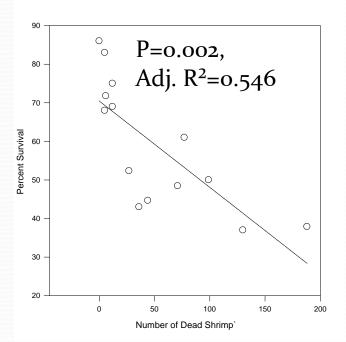
0.7

0.8

0.9

significantly different at P<0.05.

Linear regression shows no significant relationship between level of solids and individual shrimp weight.


Treatment	Percent Survival		
o hours	44.0 ± 7.55 ^b		
10 hours	67.7 ± 17.90 ^{a b}		
50 hours	41.5 ± 4.95 ^b		
150 hours	76.3 ± 9.07^{a}		
168 hours w/	60.0 ± 9.54^{ab}		
bag			

Means with the same superscript are not significantly different at P<0.05.

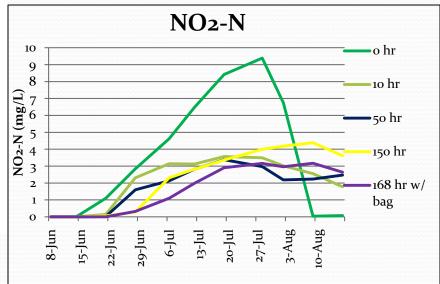
Simple Linear Regression shows:

- no significant relationship between
 - survival and NH3-N or NO2-N;
- no significant relationship between survival and solids measures (@P<0.05).

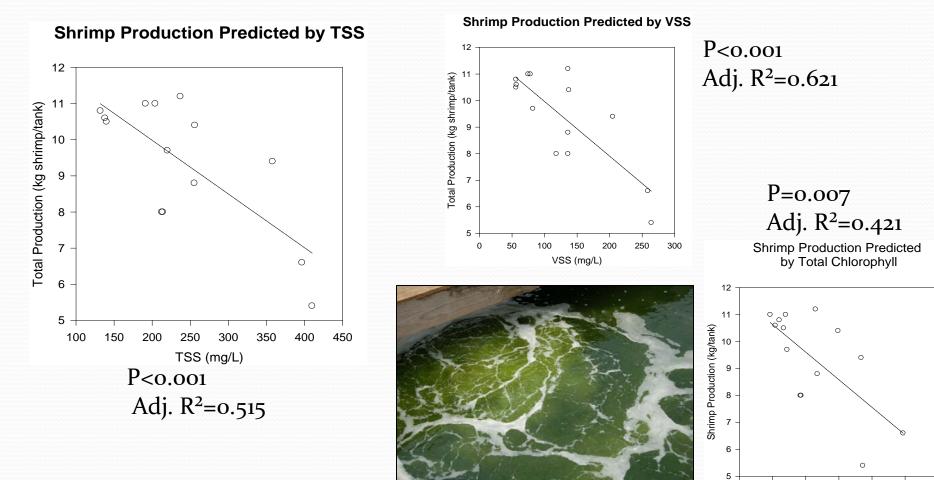
Survival Predicted by Initial Mortality Event

Mean Harvest Weight per Tank

Treatment	Mean Harvest	kg/m ³
	Weight (kg)	
o hours	7.23 ± 1.96 ^b	1.16
10 hours	10.17 ± 1.37 ^{ab}	1.64
50 hours	8.05 ± 0.07^{ab}	1.30
150 hours	11.23 ± 0.23 ^a	1.81
168 hours w/ bag	10.47 ± 0.67 ^a	1.69


Means with the same superscript are not significantly different at P<0.05.

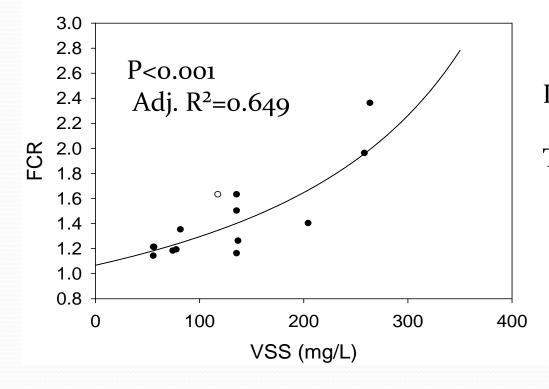
Effect of NO₂-N on Production


Total Production Predicted by Mean NO2-N

Simple Linear Regression: Higher NO2-N leads to lower shrimp production. P=0.001, Adj Rsqr = 0.566

Production Predicted by Solids Level

0 200 400 600 800 1000 1200 Total Chlorophyll (ug/L)



Treatment	FCR		
o hours	1.91 ± 0.48 ^a		
10 hours	1.31 ± 0.17 ^{ab}		
50 hours	1.63 ± 0.00 ^{ab}		
150 hours	1.17 ± 0.03 ^b		
168 hours w/ bag	1.26 ± 0.08 ^{ab}		

Means with the same superscript are not significantly different at P<0.05.

FCR Predicted by Solids Level

FCR Predicted by VSS

Imhoff: P=0.011, Adj. R²=0.383

TSS: P=0.001, Adj. R²=0.558

Conclusions

- The initial mortality event reduced survival.
- Chlorophyll levels increased with increasing solids; much of the solids was algae. Production decreased with increasing total chlorophyll.
- Total production was negatively influenced by mean NO2-N.
- Solids level did not affect growth rate or mean harvest weight. The effect on survival is unclear.
- Systems with lower solids levels had higher total production and lower FCR.